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ABSTRACT: MicroRNAs (miRNAs) are single stranded,
noncoding RNA molecules that are encoded by eukaryotic
nuclear DNA. miRNAs function through imperfect base-pairing
with complementary sequences of target mRNA molecules,
which is typically via the cleavage of target mRNA with
transcriptional repression or translational degradation. An
increasing number of studies identified dysregulation of
miRNAs in neurodegenerative disease and suggest that
alterations in the miRNA regulatory pathway could contribute
to the disease pathogenesis. However, molecular mechanisms
underlying the pathological implications of dysregulated miRNA
expression and regulation of the key genes that are involved in
neurodegenerative diseases remain largely unknown. Here, we
review the evidence for the functional role of dysregulated miRNAs involved in disease pathogenesis, as well as how miRNAs
govern neuronal functions either upstream or downstream of target genes that are disease pathogenic factors. Furthermore, we
review the cellular feedback regulation between miRNAs and target genes in neurodegenerative diseases, with a focus on
Alzheimer’s disease and Parkinson’s disease.
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As human society has developed, aging has become a
stressful issue in medical care. Neurodegenerative diseases

are among the most prevalent diseases in the aging population.1

Two of the most well-known neurodegenerative diseases in
older people, Alzheimer’s disease (AD) and Parkinson’s disease
(PD), have been intensively studied in neuroscience.2,3 Both
AD and PD are characterized by progressive neuronal
degeneration in the brain, yet, the degenerated neurons in
PD patients are mainly restricted to the substantia nigra,3 while
in AD patients, the neuronal degeneration starts from the
hippocampus and then progress to the entire cortex.2 Clinically,
the AD patients show obvious cognitive impairment and
dementia,2 while the symptoms of PD are mainly tremors,
rigidity, and bradykinesia.3 Pathologically, the hallmark of AD is
the extracellular accumulation of Aβ peptide and intracellular
tangles of hyperphosphorylated tau,2 while in PD patients, the
accumulation of α-synuclein in the lewy bodies is the most
prominent cellular change.4,5 Both of these diseases have been
linked to the mutation of certain genes, like amyloid precursor
protein (APP) in AD and leucine-rich repeat kinase 2 (LRRK2)
in PD.4−6 However, the mutation of certain genes can only
explain the cause of limited familiar AD or PD cases, while the
molecular mechanisms of the majority of sporadic AD and PD
cases still remain unknown.1−3

Recent studies on miRNAs have opened a new door for
searching for the biological causes of sporadic AD and PD.7

miRNAs are small, noncoding RNAs, that are 21−24
nucleotides (nt) long. More than 35000 miRNAs have been
identified thus far, and they are widely expressed from plants to
primates (miRBase, version 21). The miRNA gene is
transcribed by RNA polymerase II or III to generate pri-
miRNA, which is cleaved by Drosha/Pasha to yield an
approximately 70−100 nt pre-miRNA.8 The pre-miRNA is
exported out of the nucleus by Exportin 5. In the cytoplasm, the
pre-miRNA is cleaved again by Dicer to generate a 21−24 nt
mature miRNA. The mature miRNA is delivered and forms
mismatching-permitted complementary binding with the 3′
untranslated region (3′UTR) of the target mRNA through the
RNA-induced silencing complex (RISC).9 Upon binding with
its target mRNA, the miRNA’s main function is to induce the
degradation or translational inhibition of the target mRNA.9,10

Based on computational predictions, one miRNA can down-
regulate the expression of hundreds of proteins, and this has
been experimentally demonstrated as true.11,12 With pSILAC
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measurements, Selbach and colleagues found that 60−70% of
the downregulated proteins contain a seeding sequence,
whereas a seeding sequence cannot be found in the upregulated
proteins. Strikingly, overexpression or knockdown of certain
miRNAs has complementary effects on the proteome,
regardless of the seed-containing targets or no-seed-containing
effectors.12 Therefore, the role of miRNA must be considered a
crucial aspect in almost every biological process.
Brain-enriched miRNAs account for less than one-thirtieth of

the total identified miRNAs,13,14 which indicates that the
temporal and spatial expression of miRNAs is strictly controlled
or regulated. In the nervous system, the roles of miRNA have
been the best studied in neuronal development.15−19 For
example, deletion of Dicer, which globally blocks the expression
of miRNA, at a stage when ES cells enter the postmitotic state
to initiate dopaminergic (DAergic) neuron differentiation can
completely eliminate DA neuron differentiation.20 This
phenotype can be rescued by introducing small RNA species,
including miRNA, into the ES cells, which means that these
small RNA species are crucial for DA neuron generation.20 In
addition to neurodevelopment, accumulating studies have
gradually revealed the essential role of miRNA in nervous
system morphogenesis, synaptic plasticity, and neurodegenera-
tion.21,22 For instance, conditional deletion of Dicer in adult
brains results in obvious neuronal degeneration in the mouse
cortex.21,22 However, it should also be noted that the functions
of individual miRNAs might be quite specialized based on their
distinct expression patterns.13 For example, miR-9, miR-26a,
and miR-128 are especially enriched in the hippocampus, and
the medulla oblongada has an accumulation of miR-34.13 In
contrast, miR-124a, miR-125b, and miR-128 are more strongly
expressed in neurons than in glia, while miR-26a and miR-29
are more enriched in astrocytes than in neurons.13 All of these
findings indicate that miRNA research is becoming increasingly
crucial and complicated in neuroscience, including neuro-
degenerative diseases. Here, we summarize a group of
misregulated miRNAs in AD and PD. We will discuss their
specific functions in disease pathogenesis and how they regulate
target genes that are disease pathogenic factors, which, in turn,
provide feedback regulation in neurodegenerative diseases.

■ DYSREGULATED miRNAs IN AD AND PD
Identified by microarray and verified by qPCR methods, several
miRNAs, including miR-9, miR-26a, miR-124a, miR-125b, miR-
128, and the let-7 family, are highly enriched in the brain.
Interestingly, these brain-enriched miRNAs are also the most
frequently found to show altered expression in AD or PD.23−25

miRNA expression profiling in either the brain or
cerebrospinal fluid (CSF) of AD patients has been performed
by several groups.26−34 Using nylon-membrane-bound DNA
arrays, Lukiw found that miR-9 and miR-128 were increased in
the hippocampus of AD patients.26 Cogswell and colleagues
identified a differential dysregulation pattern in different brain
regions of AD patients. Taking the frontal gyrus, for example, 8
miRNAs, including miR-9, -26a, -132, and -146b, were
downregulated, and 15 miRNAs, including miR-27, -29, -30,
-34, and -125b, were upregulated.27 However, in CSF, no
expression change was detected for miR-9, -26a, -29 or -34,
only miR-146b and miR-27a-3p were identified as down-
regulated,27,34 and miR-30 family members were upregulated.27

Meanwhile, many miRNAs that showed dysregulation in CSF
did not show expression changes in the brain.27 Hebert and
colleagues detected 13 downregulated and 3 upregulated

miRNAs in the cortex of sporadic AD patients. The 13
downregulated miRNAs include the following: miR-181c, -15a,
-9, -101, -29b, -19b, -106b, -26b, and others.29 Using next-
generation sequencing to screen the miRNA expression in AD
patient blood, Leidinger and colleagues recaptured many
miRNAs that were reported to be dysregulated by other
researchers, including the miR-30 family, miR-29, miR-106, and
miR-107. Furthermore, they identified 12 miRNAs, including
the upregulated miR-112, -161, -5010-3p, -26a-5p, -1285-5p,
-151a-3p, and let-7d and the downregulated miR-103-3p, -107,
-532-5p, -26b-5p, and let-7f-5p, which can distinguish AD
patients from other patients suffering from other CNS
diseases.30 Similarly, Muller and colleagues also found that a
low level of miR-146a in CSF can be a biomarker of AD.33

Differential expression profiles are also found in an AD mouse
model compared with age-matched controls.28,31 Seventeen out
of 299 miRNAs isolated from the cerebral cortex of APPswe/
PSΔE9 mice showed downregulation compared with their age-
matched controls, while 20 miRNAs showed upregulation. The
downregulated ones include the following: miR-20a, miR-29a,
miR-125b, miR-128a, and miR-106b. However, miR-107 and
miR-146a did not show expression changes in this transgenic
mouse model.31

There are relatively fewer reports on the miRNA profiling in
PD studies than in AD studies.35−38 miRNA microarray
analyses revealed that only two miRNAs were significantly
downregulated in the amygdala from 11 PD patients compared
with 6 controls.36 These two miRNAs include miR-34c-5p and
miR-637. Another miRNA, miR-133b, was found down-
regulated in the midbrain of PD patients compared with the
controls.20 In peripheral blood mononuclear cells (PBMCs), 18
miRNAs were found to be dysregulated in 19 idiopathic PD
patients compared with 13 controls. Interestingly, all of these
dysregulated miRNAs showed downregulation in PD pa-
tients.37 These miRNAs include the following: miR-335,
-374a/b, -199, -126, -151-5p, -29b/c, -147, -28-5p, -30b/c,
-301a, and -26a. Asikainen and colleagues also performed
miRNA profiling in PD Caenorhabditis elegans models.
However, no consistent changes were detected between
humans and C. elegans, in which miR-64/65 and let-7 were
downregulated.38

It should be noted that there are many discrepancies in the
data reported from different groups.26,27,29 This discrepancy
might result from insufficient sample sizes, different detection
methods, or different genetic backgrounds, or the fact that
tissues from different brain regions were used. These are all
limitations due to using patient post-mortem samples as the
material resource.26,27,29 Another concern about using human
tissue as an experimental material is that the tissues are usually
achieved at a very late stage of the disease, thus the altered
expression of miRNA in late-stage AD patients can be either a
primary cause or secondary consequence of the neuro-
degeneration. However, some important consistencies and
correlations are still found for different lines of evidence. This is
especially true when a similar expression change of one
particular miRNA can be found in both human patients and
mouse models27,29,31 because the genetic background and
breeding environment of the transgenic mouse are more pure
and the profiling of miRNA expression can be explored at
various stages, even before other pathology phenomena occur.
Significant dysregulation of miRNAs in neurodegenerative
brains both in humans and in animal models strongly indicates
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the involvement of miRNAs in the pathology of neuro-
degenerative diseases.7

■ DYSREGULATED miRNAs IN AD AND PD
PATHOGENESIS

miRNAs Regulate Neurogenesis. In addition to being
important for brain plasticity in early development, neuro-
genesis also plays a role in neurodegenerative diseases.39−41

This is indicated by the observation that the brain regions
showing adult neurogenesis are also the regions that are
impaired in the early stages of neurodegenerative diseases.42

Additionally, adult neurogenesis impairment is frequently
observed in an AD mouse model.41 However, most of the
evidence can only show a correlation between adult neuro-
genesis and neurodegenerative diseases, and the causative role
of neurogenesis in neurodegenerative disease has not been
established yet.
In terms of function, miR-9, miR-124a, miR-125b, and miR-

128 are all known to be involved in neurogenesis.43 Several
independent studies have found an altered expression of miR-9
in AD brains. However, both upregulation and downregulation
were reported.26,27,29,44−48 For example, Lukiw and colleagues
reported an upregulation of miR-9 in the temporal cortex and
hippocampus of AD patients compared with age-matched
controls.26,45 However, Hebert and colleagues found a decrease
in the miR-9 in the cortex of sporadic AD patients.29 In an
animal model of AD, miR-9 shows a significant decrease in the
hippocampus of 6-month-old but not 3-month-old APPswe/
PSΔE9 mice.31 Because Aβ plaques form in 6-month-old
APPswe/PSΔE9 mice, this decreased expression of miR-9
might indicate that miR-9 decreases in response to Aβ
accumulation. This hypothesis is consistent with what
Schonrock and colleagues found in a cell culture model. They

detected miRNA expression changes in response to Aβ
treatment in primary neurons.49 Interestingly, most of the
miRNAs that show significant expression changes compared
with untreated cells show downregulation in response to Aβ
treatment. The proportion of the upregulated miRNAs is much
smaller. miR-9 is one of the miRNAs that are rapidly
downregulated in response to Aβ treatment in primary
neurons.49 Nevertheless, until today, no studies have indicated
a dysregulation of miR-9 in PD patients. This might be because
miR-9 is hippocampus-enriched but less expressed in the
substantia nigra. In other brain regions that were enriched for
miRNA, miR125b and miR-128 were also found to be
dysregulated in AD patients. Lukiw had reported an
upregulation of miR-128 in the brain of AD patients.26

However, as identified by microarrays, miR-128 showed
downregulation in APPSwe/PS1ΔE9 mice compared with
age-matched controls.31 miR-125b is also downregulated in
APPSwe/PS1ΔE9 mice, and miR-125b also shows significant
downregulation in response to Aβ treatment in primary
neurons.31,49

Overexpression of miR-9* and miR-124 inhibits the
proliferation of neural progenitor cells (NPCs) and promotes
neuronal morphogenesis by repressing the expression of
BAF53a (ACTL6A), which inhibits neurogenesis by regulating
chromatin remodeling.50 Meantime, Krichevsky and colleagues
found that overexpression of miR-9 and miR-124 promotes
NPCs to differentiate into Tuj1 positive cells, while the number
of GFAP positive cells decreased dramatically.43 These
researchers also claimed that this pro-neurogenesis effect of
these miRNAs is mediated by the phosphorylation of STAT3.43

However, considering the divergent effect of miRNAs on the
proteome, it is highly likely that miR-9 and miR124b promote
neurogenesis by regulating various protein targets.12 Thus far,

Table 1. Dysregulated miRNAs in AD and PD Pathogenesis

miRNA disease expression change in NDD possible mRNA target biological processes involved

miR-9 AD decrease in cortex of sporadic AD patients29 PSEN1; REST; BAF53a; Tlx; NF-H; SIRT1 cell proliferation; neurogenesis
decrease in AD mouse model31

decrease in response to Aβ treatment in primary neurons49

increase in cortex and hippocampus of AD patients26,45

miR-128 AD increase in cortex of AD patients26 SIRT1 cell proliferation; neurogenesis
decrease in AD mouse model31

miR-125b AD decrease in AD mouse model31 p53 neurogenesis; apoptosis
decrease in response to Aβ treatment in primary neurons49

miR-133b PD decrease in the human PD substantia nigra20 Pitx3 DA neuron differentiation
miR-34c AD increase in AD patients80 SIRT1; Bcl-2; Cdk4; cyclin D1 apoptosis; cell cycle

increase in AD mouse model80,31

PD decrease in PD patients36

miR-181 AD decrease in the human AD cortex85,44,29,27 ATM apoptosis
decrease in response to Aβ treatment in primary neurons49

miR-107 AD decrease in cortex of AD patients46,71 BACE1; cofilin; progranuli;CDK6 apoptosis; cell cycle
decrease in AD mouse model31

PD decrease in midbrain of PD patients20

miR-29a/b-1 AD decrease in cortex of sporadic AD patients29 BACE1; NAV3; Bim; Bmf; Hrk; Puma apoptosis
decrease in AD mouse model31

miR-146a AD increase in AD patients26,45 CCL5; IRAK1 immune response
decrease in AD patients27

increase in AD mouse model92

decrease in response to Aβ treatment49

miR-205 PD decrease in PD patients100 LRRK2 neurite outgrowth
miR-106b AD decrease in cortex of sporadic AD patients29,67 APP cell cycle

decrease in AD mouse model31,67
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confirmed miR-9 targets include the following: REST/NRSF
(neuronal restricted silencing factor/RE-1 silencing tran-
scription factor),51 Tlx,52 neurofilament H (NF-H),21 sirtuin
(SIRT1)53 and BACE1.29 REST is a transcription repressor that
represses the expression of neuronal genes.54 It is found to be
induced by aging in the human cortex and hippocampus and
decreased in AD brains compared with age-matched controls.55

Tlx is involved in neuronal stem cell self-renewal.56 NF-H is a
neurofilament protein that is important for axon maturation.
SIRT1 is a class III histone deacetylase. It is decreased in AD
brains.53,57,58 SIRT1 is implicated in Tau pathology, regulating
metabolic process, and epigenetic gene regulation.59 SIRT1 is
also associated with cellular senescence, and overexpression of
SIRT1 can enhance longevity.60 BACE1 is an even more
important target of miR-9 in AD pathology than the others.
BACE1 is a β secretase which cleaves APP and is a rate-limiting
enzyme in Aβ generation.61 Taken together, overexpression of
miR-9 might promote neurogenesis via multiple pathways by
depressing the expression of various proteins.
In sporadic PD patients, miR-133b is significantly down-

regulated.20 MiR-133b is a midbrain-enriched miRNA. Over-
expression of miR133b moderately promotes the differentiation
of DA neurons in the initial stage, while inhibiting terminal
differentiation, as indicated by the reduced expression of DAT
and TH.20 Dopamine release is also reduced in miR-133b
overexpressing cells. Conversely, inhibition of miR133b in ES
cells potentiates DA neuron terminal differentiation and
enhances dopamine release.20 Pituitary homeobox 3 tran-
scription factor (Pitx3) is one of miR-133b’s targets.20 Pitx3 is
important not only for DA neuron differentiation but also for
the long-term survival of these neurons.62 Thus, it seems that
the decreased expression of miR-133b in PD patients might
participate in pathogenesis by affecting the DA neuron
differentiation.
To summarize, the altered expression of miR-9, -125b, -128,

and -133b might potentiate disease onset by impairing
neurogenesis (Table 1). Otherwise, it might also be possible
that miRNAs, which are involved in neurogenesis, are also
important for neuronal survival. However, because this is a
brain-enriched group of miRNAs, the significant change in the
expression of these miRNAs in degenerated brains might just
be a consequence of the increased degeneration of neurons.
miRNAs Regulate Neuronal Survival. Cell death is the

fundamental pathology of neurodegenerative diseases.63,64

Genes and environmental factors that are identified as
responsible for neurodegeneration commonly converge to cell
death pathways.64 Several miRNAs that are frequently involved
in AD and PD also play important roles in cell death/apoptosis
pathways.25 Here, we describe some representative ones,
including the following: miR-29, miR-107, miR-34, and miR-
181 (Table 1).
miR-29 is strongly expressed in astrocytes and, to a lesser

extent, in mature primary neurons.65,66 It has a dramatic
increase with aging.67−69 miR-29 was decreased in sporadic AD
patients’ brains.29 Consistently, the decrease of miR-29 was also
observed in the cerebral cortex of APPSwe/PS1ΔE9 mice.31

Although altered expression of miR-29 is frequently found in
PD patient blood, no reports emphasize altered expression of
miR-29 in PD patient brains.37,70 The emerging role of miR-29
is to protect cells from apoptosis by targeting and repressing a
family of pro-apoptotic proteins, including Bim, Bmf, Hrk, and
Puma.65 Overexpression of miR-29 protects cells from various
stimuli induced cell death. These stimuli include growth factor

deprivation, ER stress, and DNA damage.65 In addition to pro-
apoptosis proteins, BACE1 is another confirmed target of miR-
29, and the decrease in miR-29 in AD patients is correlated
with the increase of BACE1 in these patients.29 Therefore,
decreased expression of miR-29 in AD patients might accelerate
Aβ generation by derepressing BACE1. In summary, miR-29
executes a protective role in neuronal survival via both the
apoptosis and APP pathways.
Downregulation of miR-107 in the temporal cortex is

frequently observed in AD patients.29,46,47 Interestingly, Kim
and his colleagues reported that the downregulation of miR-107
is also found in the midbrain of PD patients.20 Similar to miR-
29, miR-107 targets BACE1,46 and the decrease of miR-107
parallels the increase of BACE1 in AD patients,46,71 which
might be the cause for elevated Aβ generation. Moreover, miR-
107 also targets progranulin, which is a secreted growth factor
as well as a major genetic cause of frontal temporal
dementia.72,73 However, progranulin is protective, and loss of
function can lead to dementia, which functionally cannot align
with a decrease in miR-107 in AD and PD patients.
Interestingly, miR-107 is also involved in cell cycle regulation
through targeting CDK6, which is important for entering the
G1 phase.74,75 Because cell cycle re-entry commonly leads to
cell death in postmeiotic neurons, the decreased miR-107 may
lead to an increased expression of CDK6 and then the
promotion of cell cycle re-entry, which finally causes cell death.
Similar to miR-29, miR-34 is significantly increased in

aging.76−80 This is noteworthy because age is the most
prominent risk factor for AD and PD. miR-34 is reported to
increase in AD patients80 as well as in the cortex of 3-month-
old APPswe/PSΔE9 mice compared with controls.31,80 Unlike
for miR-9, the significant change in miR-34 expression in the
AD mouse model is observed before the accumulation of Aβ
because Aβ deposition can only be found in 6-month-old
APPswe/PSΔE9 transgenic mice.31 This evidence indicates that
a consistent and early increase of miR-34 in the AD brain might
be a possible cause of neuronal degeneration. This increased
expression of miR-34 in AD is intriguing because miR-34 is
commonly decreased in various cancers.81−83 Targets of miR-
34 include SIRT1,53,81,83 Bcl-2,31 Cdk4, and cyclin D2.84 Bcl-2,
which is an antiapoptotic protein, showed an increase in the
response to miR-34 inhibition and might protect cells from
apoptosis. Cdk4 and cyclin D2 are cell cycle regulators that are
involved in cell cycle re-entry, which will trigger cell death in
mature neurons.84 Taken together, increased expression of
miR-34 might induce neuronal apoptosis in AD by decreasing
the expression of Bcl-2 or regulating cell cycle re-entry.
However, a decreased expression of miR-34 is found in various
brain regions of PD patients compared with age-matched
controls.31 The decreased expression of miR-34 in PD patients
is an early stage event, indicating that it is not a secondary
response to disease development or drug treatment. The
authors found that reduction of miR-34 in differentiated
SHSY5Y cells can lead to disruption of the mitochondrial
membrane and increased oxidative stress. They claimed that the
reduction in miR-34 compromises the function of mitochondria
and leads to decreased cell viability.31 Bioinformatic studies
indicated that Parkin is a target of miR-34; however, this
relationship cannot be proven by Western blot analysis.
miR-181c is downregulated in the cortex of AD

patients.27,29,44,85 Interestingly, 1 h after treatment with Aβ,
miR-181c is significantly downregulated in primary neurons,49

suggesting that the altered expression of miR-181c in the AD
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brain might be a secondary effect in response to Aβ deposition.
miR-181c is supposed to protect cells from DNA damage by
regulating the expression of ataxia telangiectasia mutated
(ATM).47 ATM is a DNA damage inducible kinase that can
initiate the apoptosis response by activating its downstream
targets, including p53, CHK2, and H2AX.86

miRNAs Regulate Neuroinflammation. Neuroinflamma-
tion is a prominent phenomenon in neurodegenerative
diseases.87 It is speculated to cause a significant portion of
neuronal cell death in AD and PD. miR-146a might be involved
in the immune response by targeting chemokine ligand 5
(CCL5)88 and IRAK1.89 The functions of CCL5 and IRAK1
include attracting immune cells to the reactive site and
activating the NF-κB signaling pathway.90 Therefore, miR-
146a is supposed to be an inhibitor of immune responses and
might be protective in neurodegenerative diseases.91 miR-146a
is reported to be both upregulated26,45 and downregulated27 in
the brains of AD patients, and it is also increased dramatically in
AD mouse model compared with control.92miR-146a also
shows moderate downregulation in response to Aβ stimuli in
primary neurons.49 Thus, miR-146a might not be either a cause
or a result of the neurodegenerative disease; it could instead be
a protective response that the brain uses for defense. Another
interesting miRNA that is involved in the immune response in
neurodegenerative disease is let-7. miRNA let-7b is increased in
the CSF of AD patients comparing with control.32 The
increased level of let-7b in CSF might contribute to
neurodegeneration by binding to RNA-sensing Toll-like
receptor (TLR) 7, which is an innate immune receptor.32

■ miRNA−TARGET INTERACTIONS POTENTIALLY
INFLUENCE NEURODEGENERATION

miRNAs Regulate Disease Genes. Many studies indicate
that miRNAs directly target the genes that can cause familiar
AD or PD, like APP, PSEN1, BACE1, Lrrk2, α-synuclin, Parkin,
and so on.7 However, few of them are dysregulated in
degenerated brains. miR-106b, which directly targets APP,67

shows downregulation in both the human AD brain29,67 and
APPSwe/PS1ΔE9 mice.31 Although it is unclear whether the
downregulation of miR-106b is triggered by Aβ accumulation,
the decreased expression of miR-106b can possibly enhance the
expression of APP, which may accelerate Aβ accumulation
(Figure 1a). However, we need to bear in mind that miR-106b
might contribute to AD pathology in other ways. One
possibility is that miR-106b might regulate cell cycle re-entry
by targeting retinoblastoma protein 193,94 and p21.95 Both
retinoblastoma protein 1 and p21 are involved in cell cycle
regulation. Additionally, miR-106 also targets ITCH, which is
an E3 ubiquitin ligase that is involved in the p73 apoptotic
signaling pathway96 and Wnt signaling pathway.97 Furthermore,
miR-106b can also be involved in autophagy regulation, which
is closely related to Aβ accumulation98 by targeting to
SQSTM1/p62.99 Therefore, miR-106b might participate in
AD pathology by regulating APP expression, cell cycle re-entry,
apoptosis, or even neuronal differentiation.
In sporadic PD patients, Lrrk2 is considered an important

pathogenic factor; Lrrk2 is significantly increased in patients
compared with controls.5 Interestingly, miR-205, which targets
the Lrrk2 3′UTR and can regulate Lrrk2 expression (Figure
1a), was significantly downregulated in the frontal cortex and
striatum of sporadic PD patients compared with controls.100 In
contrast, miR-181, -19, and -410, which also contain the Lrrk2
3′UTR binding site, lacked a significant expression change in

sporadic PD patients. Overexpression of miR-205 in Lrrk2
R1441G mutant primary neurons rescued the shortened
neuritis phenotype.100 Interestingly, overexpression of miR-
29, which works in the apoptosis pathway, cannot rescue the
phenotype,100 which means that miR-205 works through Lrrk2
in regulating neuronal survival, and the downregulated miR-205
contributes, at least in part, to the PD pathology induced by
elevated Lrrk2 activity.100

miRNAs Downstream of Disease Genes. The miRNA
pathway has been indicated to have a critical effect on the
disease-causing gene. The regulation of miR-574 by APP is an
example of how neurodegenerative disease causing genes can
regulate biological processes through miRNA.101 Upon
phosphorylation, APP can be cleaved into several fragments,
including Aβ and the APP intracellular C-terminal domains
(AICDs).102 The AICD can translocate into the nucleus and act
as a transcription factor.102 Additionally, AICD can regulate
neurogenesis.103 However, the downstream targets of AICD
that are key mediators in this process are still unknown. Based
on the increasing importance of miRNAs in neurogenesis,
Zhang and colleagues searched for downstream miRNA targets
of APP by detecting the differential expression of a cohort of
miRNA between APP KO mice and WT controls using
microarray and qPCR.101 miR-574 is significant upregulated in
E14.5 APP knockout (KO) mice compared with the age-
matched control mice. The upregulation of miR-574 was also
observed in the APP KO NPCs, and consistently, miR-574 was
downregulated in APP-overexpressing NPCs (Figure 1b). The
authors vigorously investigated the functional correlations
between APP and miR-574 in both the APP KO mouse
model in vivo and NPC cells in vitro. miR-574 overexpression in
NPCs increased neurogenesis by approximately 30% and
decreased cell proliferation by 40%. Conversely, miR-574
knockdown decreased neurogenesis in NPC cells by approx-
imately 30% and increased cell proliferation by 22%, which was
exhibited with a BrdU pulse chase experiment. miR-574 has the

Figure 1. miRNA interacts with disease pathogenic factors in
neurodegeneration: (a) miR-106b and miR-205 as upstream regulators
of APP and Lrrk2, respectively, in mediating neuronal survival and
maturation; (b) miR-574 and Let-7 as downstream mediators of APP
and Lrrk2, respectively, in contributing to neurogenesis and neuronal
survival.
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same effect on cell proliferation and neurogenesis in vivo.
Furthermore, miR-574 knockdown inhibits the increased
neurogenesis that is induced by APP KO. miR-574 might
promote neurogenesis by directly regulating the expression of
Sox12, which is a confirmed target of miR-574. Altogether,
these findings indicated that miR-574 is a downstream effector
of APP in mediating neuronal differentiation.101

Considering Lrrk2 as another example, by using co-
immunoprecipitation (co-IP), Gehrke and colleagues found a
direct interaction between hLrrk2 and hAgo2 in both HEK293
cells and fly brain extracts.104 Ago2 is a key component of RISC
that is responsible for miRNA biogenesis. The gain-of-function
mutant of Lrrk2 significantly decreases the expression of dAgo1
in aged flies and leads to dysfunction of the miRNA signaling
pathway. The author found that miR-184/let-7 regulates the
expression of E2F1/DP and plays a weighted role in the
LRRK2 pathogenesis (Figure 1b).104

Feedback Regulation between miRNAs and Target
Genes in Neurodegeneration. The discovery of the
involvement of miRNAs in neurodegenerative diseases makes
our understanding of the molecular mechanism of neuro-
degenerative diseases more complete.7,71,81 This is especially
true considering that accumulating evidence has revealed
feedback regulations between miRNA and proteins.105 This
interaction complexity reminds us to interpret our findings in a
more systematic way. By using serial analysis of chromatin
occupancy (SACO) and chromatin immunoprecipitation
(ChIP) methods, Conaco and colleagues identified a group of
miRNAs whose transcription can be regulated by REST.106 As
mentioned above, REST is a key regulator in neuronal
differentiation, neuronal aging, and neurodegenerative dis-
eases.54,55 This group of miRNAs includes miR-9, miR-124a,
and miR-132. Verified by qPCR, REST represses the
transcription of this group of miRNAs.106 It is noteworthy
that REST is also a target of miR-9 and that both miR-9 and
miR-124a may regulate hundreds of genes to promote neuronal
differentiation.51 Additionally, miR-9 and Tlx also form a
regulatory feedback loop, which regulates neurogenesis.51 This
protein−miRNA feedback regulation loop works in a
magnifying manner or fine-tune modification manner in
neurogenesis, serving as an example of how miRNA and
proteins might function synergistically in cellular behaviors
(Figure 2).
miR-133b and Pitx3 also form a feedback loop in regulating

DA neuron differentiation. Bioinformatics searches predicted
that Pitx3 is one of miR133b’s targets (Figure 2). This was
confirmed by a luciferase assay. However, overexpression of
Pitx3 in differentiating ES cells causes an increase in the
expression of miR133b. The regulation of Pitx3 on miR133b
seems direct because the binding between Pitx3 and the
promoter of miR133b was also confirmed by a luciferase
assay.20,107 Therefore, this positive-then-negative feedback
between Pitx3 and miR-133b is different from the double-
negative feedback between REST and miR-9 in the sense that
the downstream product of Pitx3 stops its role without
amplifying it.20,107

Various apoptosis-associated miRNAs, which also show
dysregulation in AD, PD, or both, are direct transcriptional
targets of p53.108−110 As a DNA-binding protein, p53 can
activate the expression of a cohort of genes that function in
anticancer, pro-apoptosis, and sustaining genome stability
processes.111 Seven miRNAs, including miR-23a, miR-26a,
miR-34a, miR-30c, miR-103, miR-107, and miR-182, exhibit

changes that are greater than 3-fold in response to DNA-
damaging stimuli and greater than 2-fold changes in p53
knockout cells compared with p53 wild-type cells.108 The
authors further confirmed the direct binding of p53 on the
promoter of miR-34a, which showed the biggest changes in
response to p53 deletion, according to a luciferase assay.108

Moreover, both p53 and miR-34 are closely related to the aging
process.111 Conversely, p53 is not a target of miR-34a, but its
presence is important for elevating miR-34a to induce
apoptosis.109 This puzzle is solved when the researchers
found that miR-34a can indirectly regulate the expression of
p53 by repressing the expression of HDM4, which can inhibit
the expression of p53 by its RING domain.109 Thus, the
double-positive feedback between p53 and miR-34a forms a
locked checkpoint to execute the pro-apoptosis or antitumor
program (Figure 2). In addition to miR-34, p53 also directly
upregulates the expression of miR-107.110 Using a luciferase
assay and ChIP methods, Yamakuchi and colleagues identified a
p53 binding site in the 5′UTR of the miR-107’s parent gene,
pantothenate kinase enzyme 1 (PANK1). The genotoxic stress
induces increased expression of miR-107 in a p53 dependent
manner, which is very similar to miR-34a.110

■ COMMONLY DYSREGULATED miRNAs IN
NEURODEGENERATIVE DISEASES

Apart from AD and PD, dysregulated miRNAs are also found in
other neurodegenerative diseases such as Huntington’s
disease54,112−114 and amyotrophic lateral sclerosis
(ALS),21,115,116 Interestingly, recent studies also showed that
some of the miRNAs are commonly dysregulated in the
neurological disease. The overlapping involvement of miRNAs

Figure 2. The feedback regulation between miRNA and targets in
neurodegeneration. Feedback regulation between miR-9 and REST,
miR-133b and Pitx3, and miR-34 and p53 are shown. miR-9 represses
the expression of REST, which in turn represses the expression of
miR-9, forming a double-negative feedback loop in the neurogenesis
process. MiR-133b represses the expression of Pitx3, which in turn
stimulates the expression of miR-133b, forming a negative−positive
feedback loop in dopaminergic neuron differentiation and cell death
processes. p53 stimulates the expression of miR-34, which in turn
stimulates p53 expression by repressing the expression of HDM4,
forming a double-positive feedback loop to regulate neuronal cell loss.
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across neurodegenerative diseases suggests the common
underlying mechanisms for brain disorder.
For example, inflammation is a common event of acute

injuries of the central nervous system (CNS) and neuro-
degenerative disorder. Glial cells play an important role in
neuroinflammation. The miR-181 family is found to be highly
expressed in astrocytes compared with neurons. Gain-of-
function of miR-181 in cultured astrocytes leads to an increase
in cell death in response to lipopolysaccharide (LPS), an
inflammation inducer.117 In wild-type (WT) and transgenic
mice that lack the inflammatory receptor cytokine TNF-a, miR-
181 expression is altered under LPS treatment. Furthermore,
knockdown of miR-181 enhances LPS-induced expression of
pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β, IL-8,
whereas overexpression of miR-181 led to a significant increase
in the expression of cytokine IL-10, an anti-inflammatory
marker,117 suggesting that miR-181 negatively regulates the
cytokinesisin response to neuroinflammation. Interestingly,
downregulated miR-181a was found in AD CSF, compared
with that of healthy individuals.27 miR-181a has a role in
lymphocyte lineage determination,118,119 and affects T cell
sensitivity,119 which linked between the alterations of miRNA
to neuroinflammatory pathway in AD CSF.
In the sporadic AD (sAD) patients, there are decreased Aβ

clearances in the CNS.120 The lysosomal system plays a
neuroprotective role by decreasing protein accumulation
disorders.121 miR-128 is found to be upregulated in AD
mononuclear cells, and it reduced the level of lysosomal
cathepsin B, D, and S and further inhibited Aβ1−42 degrading
ability in blood mononuclear cells derived from sAD.122

Moreover, inhibition of miR-128 from AD monocytes enhances
the amount of lysosomal factors and the Aβ1−42 degrading
ability. The molecular mechanisms underlying the miR-128
mediate lysosomal expression that affect the imbalance between
the Aβ production and clearance are involved in the
pathogenesis of AD. Apart from the AD patient study, miR-
128a was found dysregulated in transgenic Huntington’s disease
monkeys. miR-128a was downregulated in the HD monkey
model by the time of birth.112 In the miRNA microarray
profiling, there are 11 miRNAs dysregulated in the cortex of
HD. Among them, miR-128a was further analysized and results
showed that miR-128a was downregulated in the HD monkey
and patients. In addition, miR-128a was shown to target
Huntingtin interaction protein 1 (HIP1), which is involved in
regulating the expression of activated caspase-3 and glial
fibrillary acidic protein (GFAP) in HD monkey frontal
cortex.112 The studies suggest that miR-128a may play a critical
role in HD and could be a viable candidate as a therapeutic or
biomarker of the disease.

■ CONCLUSION AND FUTURE DIRECTIONS
miRNAs appeared to serve as a powerful therapeutic tool for
gene regulation due to their size, abundance, tissue specificity,
and relative stability in plasma.123 They hold promise as
biomarkers that have therapeutic potential in AD and PD.30,123

However, a single miRNA might regulate the expression of a
few proteins or a large network of proteins. Additionally, the
cellular feedback loops and mechanisms of feedback regulation
of miRNA expression are not clear. Therefore, a precise
understanding of the molecular mechanism underlying the
function and regulation of a miRNA with neuronal signaling
events has facilitated progress toward how miRNAs govern
function either upstream or downstream of key disease

pathogenic factors. It potentially regulates several pathways
that are involved in disease progression and coordinates the
network of events, leading to severe neurodegeneration.
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